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Abstract
Jahn–Teller (JT) coupling between electronic motion and lattice or molecular
vibrations results in an adiabatic potential energy surface that contains either
wells or troughs of minimum-energy points. When wells are lowest in energy,
the system will vibrate about the minimum-energy points. This vibration must
be taken into account when describing the quantum mechanical states of the
system. In general, the wells will be intrinsically anisotropic. This anisotropy
alters the vibrational frequencies and hence the positions of the energy levels,
and can be particularly significant when the barriers between wells are shallow.
In this paper, we will show how anisotropic states and their energies can be
calculated using two unitary transformations. The first locates minima on the
adiabatic potential energy surface, and the second accounts for anisotropy in
the shape of the minima. The method is developed in a way general enough
to allow it to be applied to any linear JT problem. The theory is then applied
to the icosahedral H ⊗ (h ⊕ g) JT system. The results obtained will help the
understanding of, for example, the effects of vibronic coupling in positively
charged fullerene ions.

1. Introduction

Jahn–Teller (JT) coupling between orbital and vibrational motion is known to be an important
feature in a wide range of molecules and crystals. In particular, the electrons in the fullerene
molecule C60 are strongly coupled to vibrations of the molecular cage. The effects of this
coupling can be seen directly in features observed in spectroscopic experiments. Coupling
between inter- and intra-molecular vibrational modes is also believed to play an important part
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in various phase transitions seen in fullerene solids, including superconducting transitions in
A3C60 fullerides.

A good starting point for studies of JT systems is to analyse the shape of the lowest adiabatic
potential energy surface (APES). In many cases, minima (wells) are present. The system will
vibrate about the positions of the lowest-energy wells, as well as tunnelling between wells with
the same energy (in what is known as the dynamic JT effect). In general, the wells are not
isotropic, with the frequency of vibration being different in different directions in coordinate
space. In some systems, the anisotropic frequencies differ only slightly from the isotropic
ones and anisotropic effects can be neglected for many purposes. However, in other cases
the anisotropy is very important. This is particularly true if the JT coupling is such that the
barriers between wells are shallow. In other JT systems, linear coupling will result in troughs
of minimum energy in the APES rather than distinct wells. However, higher-order couplings
will warp the bottom of the trough to again give minima at discrete positions. Such minima
are highly anisotropic with the barriers in the directions around the trough being significantly
lower than those in directions across the trough. Hence the frequencies of vibration in the
directions around the trough are much lower.

The effects of anisotropy are difficult to include in JT models. When anisotropy is
neglected, coupling to a vibrational mode of frequency ω in systems with wells in the APES
can be modelled in terms of harmonic oscillator-like states with frequency ω. To include
anisotropic effects, it is necessary to split the vibrational modes in the region of a minimum
into local modes of lower symmetry, and construct appropriate vibronic states from the results.
In this paper, we will show how anisotropy can be incorporated in any linear JT system with
wells by applying two unitary transformations, one to fix the positions of the wells and one to
incorporate anisotropy into the wells.

This paper extends the theory of anisotropy already presented for other cubic [1, 2] and
icosahedral [3–6] JT systems, both by giving the result in general terms and in extending the
method to overcome limitations with the previous approaches. Anisotropy was introduced into
the T ⊗ t system using a perturbation approach to include that part of the Hamiltonian usually
neglected by the ST method by correcting the wavefunction in a well in the APES to second
order [19]. It therefore includes contributions from one- and two-phonon states. The local
mode frequencies of vibration within each minimum were therefore also corrected to second
order. To obtain exact results, it would be necessary to extrapolate the method to infinite order,
as discussed in more detail in [19]. The limitation arises because the perturbation method used
did not automatically correct the original frequency of vibration to those of the anisotropic local
modes. However, these limitations can be overcome if a scale transformation is introduced.
A scale transformation was first introduced by Liu et al [1] in a study of the T ⊗ t2 JT
system. Values for the local mode frequencies can be found by minimizing the energy of states
modified by the scale transformation with respect to the local mode frequencies. The values
of the local mode frequencies in the strong-coupling limit agreed with those calculated using
the well known method of Öpik and Pryce [20]. However, the energies of the minima, and
therefore also of the tunnelling states, were found to be higher than those without anisotropy.
This is incorrect because the scale transformation is a variational method which should lower
the energy. The discrepancy arose because the scale transformation was applied to zeroth-
order wavefunctions associated with the wells, even though the energy using these states was
calculated to second order. To be consistent, the wavefunction must also be corrected to second
order. We will show how this discrepancy may be removed by combining the methods of [19]
and [1].

The influence on the local mode frequencies and energies of the tunnelling states will be
derived in general terms and discussed in detail. These properties are the important features of
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JT systems which allow direct contact to be made between experimental results (such as those
from infra-red and Raman spectroscopy) and theory. We will then illustrate the method by
applying it to the icosahedral H ⊗ (h ⊕g) JT system, discussing in which cases anisotropy can
be ignored and in which it is important. The H ⊗ (h ⊕ g) JT system is of much current interest
due to its potential applicability to positively doped fullerene ions. Although it is currently very
difficult to manufacture hole-doped fullerene materials, there is some experimental evidence
for a strong dynamic JT effect in C+

60 [7]. Results obtained for these systems may help answer
questions such as whether materials containing positively charged ions can be superconducting
like their negatively charged counterparts.

The isotropic H ⊗ (h ⊕ g) JT system and its subsystems H ⊗ h and H ⊗ g have been
extensively studied by a number of groups [8–13], including a calculation of vibronic coupling
constants [14]. The current authors studied the H ⊗ h subsystem [15] and then the full
H ⊗ (g ⊕ h) system [16, 17], using an analytical, strong-coupling method based around a
unitary shift transformation (ST) of the Hamiltonian. The ST procedure effectively displaces
the phonon coordinates to the centres of minima on the energy surface and results in states
which are automatically vibronic. It was shown that there are minima of either D5d or D3d

symmetry on the energy surface (depending on the values of the relevant coupling coefficients)
and that, for certain coupling strengths, tunnelling between the D3d minima can lead to a singlet
ground state instead of the expected quintet. A physical explanation of the crossover of the
ground state of the H ⊗ h JT system from an H state to an A state has also been given [18].
These results will be extended to include the effects of anisotropy.

2. The scale transformation

Previous papers [1, 4] have used a scale transformation to introduce anisotropy into problems in
which there is coupling to one active vibrational mode. In the case when there is more than one
active mode, the ideal situation would be to consider the case where the scale transformation
has dimension equal to the sum of the dimensions of all the vibronic modes, which therefore
accounts for anisotropic mixing between the different modes �. However, the result is very
complicated. We will therefore apply separate scale transformations for each mode. The
appropriate form of the scale transformation is thus

Us =
∏
�

exp

(∑
γ γ ′
(��)γγ ′ (b�γ b�γ ′ − b†

�γ b†
�γ ′)

)
(1)

where the labels γ and γ ′ refer to components of the vibrational mode � and the b†
�γ and b�γ

are phonon creation and annihilation operators. The (��)γ ′γ , which can be viewed as elements
of a matrix �� , are variational parameters. The transformation can be applied to coordinates
Q�γ , as given in equation (9) of [1]. This gives

U †
s Q�γUs =

∑
γ ′

e−2�
γ ′γ Q�γ ′ , (2)

where the exp(−2�)γ ′γ are elements of a matrix exp(−2�), and where the exponential of
a matrix is defined in terms of a power series expansion [21]. Thus it can be seen that the
effect of the scale transformation is to introduce a change in the scaling of the original nuclear
coordinates. The effect of the scale transformation on this wavefunction can be visualized by
transforming the Q�γ backwards, i.e. according to the matrix exp(2�).

The physical meaning of the scale transformation can be understood by considering
the ground state wavefunction of a simple harmonic oscillator in coordinate form.
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Figure 1. Schematic representation of the effect of the scale transformation on a minimum in a two-
dimensional vibrational space. (a) An isotropic minimum is described in terms of normal-mode
coordinates Qi and Q j . (b) These are then changed to coordinates Q′

i and Q′
j appropriate to the

local modes associated with the minimum. (c) The normal modes are scaled to reflect the anisotropy
of the minimum. (d) The coordinates are returned to the original normal-mode coordinates Qi and
Q j .

The wavefunction for γ isotropic oscillators, each of mass µ and frequencyω� , can be written
as

� iso
SHO ∝ exp

(
−µω�

2h̄

∑
γ

Q2
�γ

)
(3)

where the Q�γ are the standard normal-mode coordinates used to describe the JT system
in question. An anisotropic oscillator will be composed of vibrations of frequency ω�′ in
directions Q′

�γ which, in general, are not the same as the Q�γ . The wavefunction must
therefore be written in terms of these new local-mode coordinates, which will be different for
each minimum in question. The required wavefunction is

�anis
SHO ∝ exp

(
− µ

2h̄

∑
γ

ω�′ Q′2
�γ

)
. (4)

The scale transformation must therefore convert� iso
SHO into �anis

SHO.
Figure 1 illustrates graphically the required transformations for a system with two normal-

mode coordinates Qi and Q j . The first step is to change from the coordinates Qi and Q j

(figure 1(a)) to local mode coordinates Q′
i and Q′

j (figure 1(b)). This can be achieved using
a unitary matrix S composed of eigenvectors of the so-called curvature matrix [5] appropriate
to that minimum. The curvature eigenvectors must then be scaled to generate an anisotropic
minimum (figure 1(c)) by multiplying them by another matrix T involving the anisotropic
frequencies. Finally, the first transformation must be undone and the original group theoretical
coordinates regained by multiplying by S† (figure 1(d)).

Mathematically it is found that, in the general case, an appropriate form for the matrix T
is a diagonal matrix [

√
λ�′ ] in which the diagonal elements are

√
λ�′ , where λ�′ is the ratio of

the frequency of the local mode of symmetry γ ′ to the original frequency, λ�′ = ω�′/ω� . The
required form for exp(2�) is thus

e2� = S† · [
√
λ�′ ] · S. (5)

This definition of the matrix exp(2�) is realized if the matrix � takes the form

� = 1
4 S† · [ln(λ�′)] · S (6)

where [ln(λ�′ )] is a diagonal matrix with diagonal elements ln(λ�′ ). It should be noted
that although the S matrices appearing in the scale transformation will be different for each
minimum in the APES, the local mode frequencies λ�′ are the same for all minima of the same
symmetry.
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3. Perturbation theory

3.1. The scale transformation of the Hamiltonian

In this section, we will describe the effect of applying both the shift and scale transformations
to a general linear JT Hamiltonian, allowing for coupling to vibronic modes of more than one
symmetry. The general JT Hamiltonian is H = Hosc + Hint where

Hosc = 1

2

∑
�γ

[
P2
�γ

µ
+ µω2

�Q2
�γ

]

Hint =
∑
�γ

V� L̂�γ Q�γ

(7)

and P�γ is the momentum conjugate to Q�γ , the V� are vibronic coupling coefficients and the
L̂�γ are operators characterizing the vibronic interaction. On applying the shift transformation
Ud = exp(− ∑

�γ α�γ P�γ ) and scale transformation (1) to H, we obtain the transformed

Hamiltonian H̃ = H̃1 + H̃2 + H̃3, where

H̃1 =
∑
�γ

h̄ω�

(
α′2
�γ

4
+ (sinh2 2��)γγ

)
− 1√

2

∑
�γ

k� L̂�γ α
′
�γ

H̃2 =
∑
�

∑
γ γ ′

{(
− 1√

2
k� L̂�γ +

h̄ω�
2
α′
�γ

)
[(b�γ ′ + b†

�γ ′ )e−2��
γ ′γ ]

}

H̃3 =
∑
�γ

h̄ω�(b
†
�γ b�γ + 1

2 )

(8)

and where the coefficients are

k� = V�

√
h̄

µω�
, α′

�γ = α�γ
√

2µω�h̄. (9)

H̃′
1 does not depend on the phonon operators, H̃′

2 does contain phonon operators, and H̃′
3 is an

oscillator Hamiltonian. Terms quadratic in the phonon operators have been ignored in H̃′
2 [1].

The eigenstates of H̃′
1 in the infinite-coupling limit are denoted by Xi , with i = 0 for

the ground state. The corresponding energies of these states are E X
i . Multiplying by the

eigenstates of the oscillator Hamiltonian H̃′
3 gives the unperturbed basis set; the ground state

will be denoted by |Xi; 0〉, the state with one phonon excitation of symmetry�γ will be denoted
|Xi ; 1�γ 〉 etc. The effects of anisotropy may be found by incorporating H̃′

2, up to second order
in perturbation theory, within these states. The energy of a minimum X is therefore given by

EX = E X
0 + 〈X0; 0|H̃′

2|X0; 0〉 +
∑

i �=0,�γ

|〈Xi ; 1�γ |H̃′
2|X0; 0〉|2

E X
0 − E X

i − h̄ω�
. (10)

By minimizing this expression with respect to the variational parameters λ�′ , the values of
these parameters may be fixed. Thus the local mode frequencies are found as a function of
the coupling strength. This is an improvement over the method of Öpik and Pryce [20], which
only gives values for these frequencies in the infinite-coupling limit.

3.2. The anisotropic corrections

Having separated the transformed Hamiltonian in the way described in the previous section, the
corrections to the wavefunctions can be found by standard perturbation theory. From the form
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of the perturbing Hamiltonian H̃′
2, the ground phonon state is only coupled to singly excited

phonon states in first order and to doubly excited (or two-) phonon states in second order.
However, there is a problem using non-degenerate perturbation theory for some of these
two-phonon states. Those two-phonon states which have an energy just above the ground
orbital state (i = 0) become degenerate with the ground state in the strong-coupling limit
and they would therefore cause infinities to appear in the resulting equations (compare with
equation (3.25) of [19]). Thus not all of the second-order terms are necessarily included in the
wavefunction using non-degenerate perturbation theory. Rather than including an incomplete
set of states, we approximate by ignoring all the two-phonon states in this paper. Fortunately,
the two-phonon terms do not actually affect the energy of the minima to second order. This
arises because, as they occur in the second-order correction to the wavefunction, their only
possible contribution to the energy would be via the matrix element H̃′

1, between themselves
and the zeroth-order (zero-phonon) wavefunction. (Note that all other matrix elements would
be higher than second order in perturbation theory.) As H̃′

1 contains no phonon operators, this
matrix element is in fact zero. The only effect of these terms is, therefore, on the overlap and
the matrix elements of the Hamiltonian between different minima. Therefore, in the infinite-
coupling limit, the wavefunction will remain correct, although some accuracy will be lost in
the tunnelling regime.

In the sum over one-phonon states, it might be thought that a similar problem would arise
if one-phonon states just above the ground orbital state (i = 0) were included. In fact, this
is not the case as the matrix element of H̃′

2 is automatically zero for these states. Thus the
corrected wavefunction for the ground minimum X in the transformed space takes the form

ψX = |X0; 0〉 +
∑

i �=0,�γ

ZX
1 (i, �γ )|Xi ; 1�γ 〉 + ZX

2 |X0; 0〉. (11)

The coefficients ZX
1 (i, �γ ) and ZX

2 are found by evaluating the appropriate matrix elements
of the perturbing Hamiltonian, with the results

ZX
1 (i, �γ ) =

∑
γ ′

(− 1√
2
k�〈X0|L̂�γ ′ |Xi 〉 + 1

2δi0h̄ω�α′
�γ ′

)
e−2��
γγ ′

E X
0 − E X

i − h̄ω�

ZX
2 = − 1

2

∑
i,�γ

(ZX
1 (i, �γ ))

2.

(12)

It is useful to look at the way in which these coefficients change as the coupling strength
increases. As k� → ∞ and considering only one vibrational mode for simplicity, we find that
the first-order coefficientZX

1 (i, �γ ) is proportional to 1/k�, while the second-order coefficient
is proportional to 1/k2

�. Thus, in strong coupling, the wavefunction is dominated by the zeroth-
order term |X0; 0〉, confirming that the original separation of the transformed Hamiltonian into
H̃′

1 + H̃′
3 and H̃′

2 is valid.
In the untransformed space, the anisotropic wavefunction is �X = U X

d U X
s ψX , where U X

d
and U X

s are the shift and scale transformations respectively for well X . The next sections
will show how this wavefunction may be used to find the new energy of a minimum and the
overlap and Hamiltonian matrix elements between different minima. We note that the energy
of a minimum, corrected to second order, may be found either by evaluating matrix elements
of the wavefunction �X or by using equation (10). (Both calculations give the same result,
which provides a useful check on the calculations.) For a general well X , the corrected ground
state energy is EX = E (0)

X + E (2)
X , where

E (0)
X = −1

2

∑
�γ

k�√
2
〈X0|L̂�γ |X0〉α′

�γ +
∑
�γ

h̄ω�

(
1

2
+ (sinh2 2��)γγ

)
(13)
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is the zeroth-order energy and

E (2)
X = 1

2

∑
�

∑
i,γ,γ ′

k2
�〈X0|L̂�γ |Xi 〉〈X0|L̂�γ ′ |Xi〉e−4��

γγ ′

E0 − Ei − h̄ω�
(14)

is the second-order correction. First-order corrections are zero.
When determining the well energy from the matrix elements of �X , the unitary

transformations on each side of the Hamiltonian Ĥ are the same. Thus the Hamiltonian
may be transformed into H̃′

1, H̃′
2 and H̃′

3 and their matrix elements easily evaluated. However,
this will not be the case for overlaps and matrix elements between two different minima, A and
B , which are therefore harder to evaluate. In order to calculate the overlap, it is necessary to
calculate terms such as 〈�A|�B〉. Unfortunately, such expressions cannot be evaluated using
the method of second quantization used for isotropic cases [15–17]. In order to proceed, it is
therefore advantageous to switch to semi-classical coordinate space and perform the overlap
calculation using integral calculus directly.

3.2.1. The semi-classical form for the anisotropic wavefunction. To zeroth order, the general
form for an anisotropic ground state vibronic wavefunction localized in a minimum X is

�
(0)
X ∝ U X

d U X
s

∏
�

exp

(
−µω�

2h̄

∑
γ

Q2
�γ

)
|X0〉. (15)

In the last section, it was shown that the effect of U X
s is to introduce a coordinate change in the

Q�γ via the matrix e2�
A (equation (2)). Similarly, the effect of U X

d is to displace the coordinates
Q�γ to the centre of the minimum X . Thus the above wavefunction may be simplified to

�
(0)
X =

∏
�

N� exp

(
−µω�

2h̄
( �Q� + �αX

� h̄)† · (e4��
X ) · ( �Q� + �αX

� h̄)

)
|X0〉 (16)

where the vector �αX
� has components αX

�γ . The normalization constants N� for each mode �
can be evaluated using the form of the matrix e2�

X given in equation (5), with the result

N� =
(
µω�

π h̄

)n�/4√
det(e2��

X ) ≡
n�∏
�′=1

(
µω�′

π h̄

)1/4

(17)

where n� is the dimensionality of the vibronic mode �.
Although second quantized notation cannot be used to evaluate the overlap itself, it can be

used to write one-phonon states etc in terms of the semi-classical zero-phonon state obtained
above. Thus a state with a single phonon excitation γ in well X may be written as

U X
d U X

s |1�γ 〉 = −
√

2µω�
h̄

[( �Q� + �αX
� h̄)† · e2��

X ]γU X
d U X

s |0〉 (18)

where the subscript γ to the square bracket indicates the γ th component of the matrix product.
Other excited phonon states may also be generated by this mechanism.

3.2.2. Derivation of the zeroth order anisotropic overlap. As the excited states may be
expressed in terms of the ground phonon state, the overlap between them will always involve
the overlap between two different zeroth-order well states �(0)

A and �(0)
B . The latter overlap is

given by the integral of �(0)∗
A �

(0)
B over all �Q, which, with some simplifications and using the

identity∫ ∞

−∞
exp[−( �Q† · M · �Q − �V † · �Q)] d �Q = exp

(
1

4
�V † · M−1 · �V

)√
πn

det(M)
(19)
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gives

S(0)AB = 〈A|B〉
∏
�

√
2n det e4��

A

det W�

exp

(
1

4
�x†
� · W−1

� · �x�
)

× exp(− 1
4 (�α′A†

� · e4��
A · �α′A

� + �α′B†
� · e4��

B · �α′B
� )) (20)

where the vector �x� and the matrix W� are defined by

�x� = −[�α′A†
� · e4��

A + �α′B†
� · e4��

B ]

W� = e4��
A + e4��

B .
(21)

The factor involving the square root is not present in the isotropic overlap. The physical
significance of this term lies in the fact that two anisotropic minima will have an orientation
relative to each other. Thus, even if the centres of the two anisotropic minima coincide (in
which case the exponential decay term is equal to one) the total phonon overlap need not be
unity.

First- and second-order corrections to the overlap involve the overlap of one-phonon states
with the ground state. These may be calculated in a similar manner to that given above.

3.3. Anisotropic overlap and matrix elements

The total overlap can now be evaluated. In order to calculate the parts involving the excited
states, the identity (19) must be differentiated with respect to the vector �V . The total overlap
can then be expressed in the form

SAB = S(0)ABFAB (22)

with S(0)AB as found above and

FAB = (1 + F (1)
AB + F (2)

AB ). (23)

The first-order term in this expression is given by

F (1)
AB = −

∑
i �=0,�γ

Z A
1 (i, �γ )

〈Ai |B0〉
〈A0|B0〉 [�vA

� · e2��
A ]γ −

∑
i �=0,�γ

ZB
1 (i, �γ )

〈A0|Bi〉
〈A0|B0〉 [�vB

� · e2��
B ]γ

(24)

and the second-order term is

F (2)
AB =

∑
i �=0

∑
j �=0

∑
�γ

∑
�′γ ′

Z A
1 (i, �γ )ZB

1 ( j, �′γ ′)
〈Ai |B j〉
〈A0|B0〉 g AB

��′γ γ ′ (25)

where

�vX
� = �x†

� · W−1
� + �α′X

�

gXY
��′γ γ ′ = 2δ��′(e2��

X · W−1
� · e2��

Y )γγ ′ + [�vX
� · e2��

X ]γ [�vY
� · e2��′

Y ]γ ′ .
(26)

In the isotropic limit, all the λ�′ are equal to unity as found by direct substitution so that S(0)AB
reduces back to the isotropic overlap. Similarly, the perturbation corrections reduce back to
those given in earlier work by Dunn [22]. This provides a useful check on these expressions.

The matrix elements of the Hamiltonian may be derived using similar techniques, using
identity (19) by differentiating with respect to the vector �V . The zeroth-order matrix element
of the oscillator Hamiltonian is then found to be

(Hosc)
(0)
AB = S(0)AB

∑
�

h̄ω�
2

{
tr(W−1

� − e4��
B · W−1

� · e4��
B + e4��

B )

+ 1
2 (|�x†

� · W−1
� |2 − |�vB

� · e4��
B |2)}. (27)
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In order to calculate the matrix element of the total oscillator Hamiltonian, it is again
simpler to write the excited phonon states in terms of the zeroth-order states. The resulting
integrals may then be evaluated in the same manner as those for (Ĥosc)

(0)
AB . After much algebra,

the final form for the matrix element of the oscillator Hamiltonian is

(Hosc)AB = (Hosc)
(0)
ABFAB − S(0)AB (G(1)AB + G(2)AB ) (28)

where

G(1)AB = −
∑

i �=0,�γ

Z A
1 (i, �γ )

〈Ai |B0〉
〈A0|B0〉 h̄ω�hB A

�γ −
∑

i �=0,�γ

ZB
1 (i, �γ )

〈A0|Bi〉
〈A0|B0〉 h̄ω�h AB

�γ

G(2)AB =
∑
i �=0

∑
j �=0

∑
�γ

∑
�′γ ′

Z A
1 (i, �γ )ZB

1 ( j, �′γ ′)
〈Ai |B j〉
〈A0|B0〉 (h̄ω�′ [�vA

� · e2��
A ]γ [hB B

�′ − �vB
�′ · e6��′

B ]γ ′

+ h̄ω�[�vB
�′ · e2��′

B ]γ ′ hB A
�γ + 2δ��′ h̄ω�[m AB B

� − (e2��
A · W−1

� · e6��
B )]γ γ ′) (29)

are first- and second-order corrections respectively and

hXY
�γ = [(�vX

� · e8��
X − �x†

� · W−1
� ) · W−1

� · e2��
Y ]γ

m XY Z
�γγ ′ = [e2��

X · W−1
� · (e8��

Y − I ) · W−1
� · e2��

Z ]γ γ ′ .
(30)

The zeroth-order matrix element of the anisotropic interaction is

(Hint)
(0)
AB = S(0)AB

∑
�γ

k�√
2

[�x†
� · W−1

� ]γ
〈A0|L̂�γ |B0〉

〈A0|B0〉 . (31)

In a similar manner, the first-order correction is found to be

(Hint)
(1)
AB = −S(0)AB

∑
i �=0,�′γ ′

(
Z A

1 (i, �
′γ ′)

∑
�γ

k�√
2

〈Ai |L̂�γ |B0〉
〈A0|B0〉 P A

�γγ ′

+ ZB
1 (i, �

′γ ′)
∑
�γ

k�√
2

〈A0|L̂�γ |Bi〉
〈A0|B0〉 P B

�γγ ′

)
(32)

where

P X
�γγ ′ = {[�x†

� · W−1
� ]γ [�vX

�′ · e2��′
X ]γ ′ + 2δ��′(W−1

� · e2��
X )γγ ′ }, (33)

while the second-order correction is

(Hint)
(2)
AB = (Hint)

(0)
AB(Z A

2 + ZB
2 ) + S(0)AB

∑
i �=0

∑
j �=0

∑
�′γ ′

∑
�′′γ ′′

Z A
1 (i, �

′γ ′)ZB
1 ( j, �′′γ ′′)

×
∑
�γ

k�√
2

〈Ai |L̂�γ |B j〉
〈A0|B0〉 {[�x†

� · W−1
� ]γ g AB

�′�′′γ ′γ ′′

+ 2δ��′(W−1
� · e2��

A )γγ ′ [�vB
�′′ · e2��′′

B ]γ ′′ + 2δ��′ (W−1
� · e2��

B )γγ ′′ [�vA
�′ · e2��′

A ]γ ′ }.
(34)

The formulae given above show how the frequencies of vibration around minima in the
lowest APES can be determined for any JT system taking anisotropy into account, and how
the results can be used to determine wavefunctions and energies of anisotropic vibronic states.
We will now illustrate how the formulae can be used by applying them to the icosahedral
H ⊗ (h ⊕ g) JT system. We will also give a physical discussion of the results obtained.
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4. Application to the H ⊗ (h ⊕ g) problem

4.1. Anisotropy in the D3d minima

In order to apply the scale transformation to the basic Hamiltonian, the form of the matrix �
specific to the D3d minima must be obtained. We should first note that the condition for the
D3d minima to be deep is

V 2
hb

� 5

9

(
V 2

ha
+
ω2

h

ω2
g

V 2
g

)
(35)

so that the coupling constant Vhb appearing in the Hamiltonian (equation (3) of [16], with Vhb

replacing V2) may be safely neglected in H̃2.
From group theory, it is known that when the g and h representations of Ih are restricted

to the subgroup D3d they split according to

g → a1 ⊕ a2 ⊕ e h → a1 ⊕ 2e

so that the appropriate form for �g involves {λg,a, λg,a′ , λg,e, λg,e}, while �ha involves
{λha ,a, λha ,e, λha ,e, λha ,e′ , λha ,e′ }. S ≡ SD3d

k is a unitary matrix which reduces the icosahedral
h modes into local modes of the above symmetries. Equivalently, it produces a change in the
coordinates from the original (�γ ) to coordinates which lie along the curvature eigenvectors
of the anisotropic kth minimum. In order to find these latter matrices, the curvature matrix for
the energy surface at the point of the D3d minimum in question must be calculated. This is
straightforward using the method of Öpik and Pryce [20]; the results are given in the appendix.

The first step in applying the scale transformation is the evaluation of the local mode
frequencies,λ�′ . This involves calculating the energy of any one of the D3d minima corrected to
second order in perturbation theory, using the perturbing Hamiltonian H̃′

2 with terms involving
Vhb neglected. The result is

H D3d
aa = −2

9

k2
ha

h̄ωh
− 2

9

k2
g

h̄ωg
+

h̄ωh

2

(
λha ,a

2
+

1

2λha ,a
+ λha ,e +

1

λha ,e
+ λha ,e′ +

1

λha ,e′

)

+
h̄ωg

2

(
λg,a

2
+

1

2λg,a
+
λg,a′

2
+

1

2λg,a′
+ λg,e +

1

λg,e

)

− h̄ωh

2

k ′2
ha

λha ,e′ fha,e′
− 9h̄ωh

2

k ′2
ha

λha ,e fha,e
− 5h̄ωg

k ′2
g

λg,e fg,e
(36)

where
fha,e = 14k ′2

ha
+ 5k ′2

g ωg/ωh + 18

fha,e′ = 6k ′2
ha

+ 15k ′2
g ωg/ωh + 18

fg,e = 15k ′2
g + 6k ′2

ha
ωh/ωg + 18.

(37)

Minimization with respect to the λ�′ parameters then generates the local mode frequencies

λha ,a = λg,a = λg,a′ = 1

λha ,e =
√

1 − 9k ′2
ha
/ fha,e

λha ,e′ =
√

1 − k ′2
ha
/ fha,e′

λg,e =
√

1 − 10k ′2
g / fg,e.

(38)

It can be seen that the effect of anisotropy on λha ,e and λg,e can be quite significant. When
coupling to the ha mode is strong and the g mode is weak, the anisotropic frequency ωha,e is
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reduced to
√

5/14 ≈ 0.59 of its isotropic value, and when the coupling to g is strong but that to
ha is weak, the frequency ωg,e is reduced by a factor

√
1/3 ≈ 0.58. These frequency changes

will be significant in, for example, spectroscopic experiments probing the vibrational states.
On the other hand, λha ,e′ is close to unity for all coupling strengths. Therefore, anisotropic
changes in this frequency will have little effect on the tunnelling energies. We will thus take
this frequency to equal unity in the subsequent calculations.

The energies of the H , A and G tunnelling states have been shown previously [15–17] to
be given by the expressions

ED3d
H = HD3d

aa − 2HD3d
ab + HD3d

ae

1 − 2SD3d
ab + SD3d

ae

ED3d
A = HD3d

aa + 6HD3d
ab + 3HD3d

ae

1 + 6SD3d
ab + 3SD3d

ae

ED3d
G = HD3d

aa + HD3d
ab − 2HD3d

ae

1 + SD3d
ab − 2SD3d

ae

.

(39)

Thus there are two possible overlaps between different wells, and similarly also two possible
off-diagonal Hamiltonian matrix elements. These may be calculated using the general
expressions derived above. Unfortunately, the results are too complicated to give here as
analytical expressions.

The results for the corrected overlap and Hamiltonian matrix elements cannot be
substituted directly into the expressions for the tunnelling energies given in equation (39)
because the overlaps and matrix elements have been corrected to second order, but when
they are substituted into equation (39) they will contain some higher-order contributions.
Therefore, the contributions to the tunnelling energies must be separated into zeroth-, first-
and second-order parts, with higher-order terms being neglected. The resulting tunnelling
splittings ED3d

A –ED3d
H and ED3d

G –ED3d
H are too complicated to show as 3D graphs due to the

behaviour at weak coupling when the limiting values depend upon the way the limiting point
is reached. In order to see the effects of anisotropy on the tunnelling splittings more clearly,
results for the pure H ⊗ h system were plotted as a function of the coupling strength in [6].
It was found that the calculated values of the tunnelling splitting including anisotropy were
much closer to numerical results obtained using a Lanczos diagonalization procedure than
values calculated without anisotropy. Figure 2 shows the tunnelling splittings for the H ⊗g JT
system. Results including the perturbation correction but excluding the scale transformation
are also shown. It is clear that, while the perturbation correction decreases the tunnelling
splitting, the scale transformation then increases it again (though not by as much). The effect
of both the scale transformation and perturbation correction is to lower the energy of the states
involved. However, the perturbation correction has a larger effect on the ground state than
the excited state for the scale transformation. This is seen as an increase in the difference in
energy between the two states.

4.2. Anisotropy in the D5d minima

The condition that the D5d wells are absolute minima is the reverse of the inequality in
equation (35). Therefore, the problem is effectively reduced from the H ⊗ (h ⊕ g) JT
system to the simpler H ⊗ h JT system involving only h-type phonon operators in the scale
transformation. Thus the matrix � for the D5d minima is a square 5 × 5 matrix. From group
theory, the h representation of the icosahedral group splits according to h → a1 ⊕e1 ⊕e2 when
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Figure 2. Comparison of the scale transformation (dashed), perturbation-corrected (dot–dashed)
and isotropic (solid) tunnelling splittings between the A and G tunnelling states and the ground H
tunnelling state for the pure H ⊗ g JT problem, as a function of kg/h̄ωg .

the symmetry is reduced to D5d. Thus the correct form for�hb involves {λa, λe1 , λe1 , λe2 , λe2 }.
The S-matrices that reduce the symmetry to these local modes are given in the appendix.

Following the same procedure as for the D3d wells, we find that the energy of any D5d

minimum corrected to second order in perturbation theory is

HD5d
AA = h̄ωh

2

[
−4

5
k ′2

hb
+
λa

2
+

1

2λa
+ λe1 +

1

λe1

+ λe2 +
1

λe2

− k ′2
hb

10(1 + k ′2
hb
)

(
1

λe1

+
1

λe2

)]
(40)

where k ′
hb

= khb/h̄ωh . If the λ�′ in this expression are replaced by unity, the isotropic energy
given in [17] is regained, plus a second-order correction. This second-order correction is
responsible for lifting the degeneracy of the vibronic mode. Minimization of the energy with
respect to the λ�′ results in

λa = 1

λe1 = λe2 =
√√√√1 − k ′2

hb

10k ′2
hb

+ 10
.

(41)

Thus the frequency of the a mode is unaffected by anisotropy but the e1 and e2 modes behave
identically. The two e modes are accidentally degenerate through underlying deeper symmetry
within the D5d minima. The frequency of the e modes is reduced by a factor of

√
9/10 ≈ 0.95

in the infinite-coupling limit. As this is very close to one, anisotropic effects have very little
effect on the D5d minima. It should be noted that HD5d

AA with the above frequencies gives
correct tunnelling energies in the infinite-coupling limit. Thus the theory derived above is an
improvement over that presented originally in Dunn and Bates [19].

In order to calculate the energies of the H and A tunnelling states using the expressions

ED5d
A = HD5d

AA + 5HD5d
AB

1 + 5SD5d
AB

ED5d
H = HD5d

AA − HD5d
AB

1 − SD5d
AB

(42)
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Figure 3. Zeroth-, first- and second-order contributions to the anisotropic overlap between wells
A and B for the D5d minima, as a function of khb/h̄ωh (with each term divided by the zeroth-order
overlap).

derived previously [15–17], the anisotropic overlaps and matrix elements between the two
wells A and B , for example, must first be found using the general expressions derived above.
The overlap is given by equation (22). The zeroth-order overlap is

S(0)AB = −
√

12k ′2
hb
λe1

5(3λe1 + 2)(2λe1 + 3)
exp

( −λe1

(3λe1 + 2)

)
(43)

and the perturbation corrections are given by

F (1)
AB = 24

5

k ′2
hb

(k ′2
hb

+ 1)(3λe1 + 2)

F (2)
AB = − 3

100

k ′2
hb
(5(3λe1 + 2)(19λe1

2 + 42λe1 + 19) + 8k ′2
hb
λe1(3 + 2λe1))

λe1(k ′2
hb

+ 1)2(3λe1 + 2)2(3 + 2λe1)
. (44)

Figure 3 shows a plot of the zeroth-, first- and second-order overlaps, with the zeroth-order
overlap factorized out. It can be seen that, in the strong-coupling regime, the first-order
overlap is not negligible but instead approaches the zeroth-order term. This result obviously
throws doubt on the way the Hamiltonian was initially separated into the two parts H̃′

1 and H̃′
2.

However, it was shown in section 3 that the coefficients of the first-and second-order terms in
the wavefunction approach zero at high coupling, which would appear to contradict this result.
The explanation for this apparent discrepancy lies in the fact that the excited phonon states
are more spread out. At strong coupling, the wavefunction is dominated by the zero-phonon
state with only a very small contribution from the one-phonon states. However, because the
one-phonon state is much more spread out than the zero-phonon state, the overlap between a
zero-phonon and a one-phonon state is substantially greater than a zero-phonon to zero-phonon
overlap. Therefore, the perturbation theory is not valid for the overlap, but it is valid for the
wavefunction itself. At the end of this section, it will be seen that the perturbation correction
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Figure 4. Anisotropic and isotropic overlaps between wells A and B as a function of khb/h̄ωh for
the D5d minima.

to the tunnelling energies is very small, so that the method remains valid for regions which
apply to realistic experimental situations.

Figure 4 shows a plot of the anisotropic overlap, with the isotropic overlap shown for
comparison. Also shown in the figure is the perturbation-corrected overlap without the scale
transformation. This graph shows that, on including the perturbation corrections, the overlap
between the two minima increases considerably for reasons discussed above. The scale
transformation has less effect, but also increases the overlap. This increase occurs because the
scale transformation replaces the original degenerate frequency by the local mode frequency,
which is always less than the original frequency. The phonon states are therefore even more
spread out, leading to the observed increase in overlap.

The matrix element of the Hamiltonian within a well has been calculated above. The matrix
element between wells A and B is much more complicated to evaluate. From equation (28),
the zeroth-order matrix element of the oscillator Hamiltonian is

(Hosc)
(0)
AB = S(0)AB

(
9λ4

e1
+ 32λ3

e1
+ 43λ2

e1
+ 32λe1 + 9

2λe1(3λe1 + 2)(2λe1 + 3)
− 2k ′2

hb

3λ2
e1

− 2

(3λe1 + 2)2

)
h̄ωh (45)

and the perturbation corrections are

G(1)AB = −12
(1 + λe1)k ′2

hb

(k ′2
hb

+ 1)(3λe1 + 2)2
,

G(2)AB = 1

20

k ′2
hb

λ2
e1(k

′2
hb

+ 1)2(3λe1 + 2)3(3 + 2λe1)2
(5(3λe1 + 2)(27λe1

6 + 117λe1
5 + 211λe1

4

+ 240λe1
3 + 211λe1

2 + 117λe1 + 27) + 24k ′2
hb
λe1

2(1 + λe1)(3 + 2λe1)
2). (46)

The first-order perturbation correction approaches the zeroth-order term in strong coupling for
the same reason as that occurring in the overlap terms.
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Figure 5. Zeroth-, first- and second-order contributions to the anisotropic tunnelling energies of
the H State for the D5d Minima, as a function of khb/h̄ωh .

The zeroth-, first- and second-order contributions to the matrix element of the interaction
Hamiltonian are given by

(Hint)
(0)
AB = −4k ′2

hb
h̄ωh S(0)AB

3λe1 + 2

(Hint)
(1)
AB = −k ′2

hb
h̄ωh S(0)AB [5(3λe1 + 2)(15λ2

e1 + 4λe1 − 9) + (144λ2
e1 + 216λe1)k ′2

hb
]

10(k ′2
hb

+ 1)(3 + 2λe1)(3λe1 + 2)2λe1

(Hint)
(2)
AB = −k ′4

hb
h̄ωh S(0)AB [5(3λe1 + 2)(57λe1

2 + 122λe1 + 51) + 24k ′2
hb
λe1(3 + 2λe1)]

100(3λe1 + 2)3(3 + 2λe1)(k ′2
hb

+ 1)2λe1
. (47)

It is found that the effect of anisotropy is to increase the size of the overall matrix element in
a similar way to that which occurred in the calculation of the overlap.

The calculated zeroth-, first- and second-order contributions to the energies of the H
state are shown in figure 5. It is quite clear that the first- and second-order contributions are
small compared to the zeroth-order terms, which is not surprising as anisotropic changes in the
frequencies are small. Results for the A state are similar, except that the first- and second-order
corrections are slightly larger in weak coupling. Nevertheless, they are at most 15% of the
zeroth-order value. However, there is clearly a problem with the perturbation corrections to
the A state in the weak-coupling limit. This arises because, in the expression for the energy
of the A state, both the numerator and denominator tend to zero in the weak-coupling limit
although there is a well defined limit in the isotropic case. However, perturbation theory in this
limit is no longer always well defined. This arises as the perturbation approach is valid only in
strong coupling when the energy levels are far apart. An alternative explanation is that the off-
diagonal matrix element H D5d

AB contains some third-order terms. This arises because, when the
expression for this matrix element is evaluated, it is impossible to separate the Hamiltonian,
as different unitary transformations appear on each side of it. In both the numerator and
denominator the expression for the energy of the A state becomes zero in the weak-coupling
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limit so that these third-order terms could have a large effect. The tunnelling splitting between
the H and A vibronic states was illustrated in figure 1 in [16] as a function of khb . This figure
showed that the calculated splitting including the anisotropic contributions agreed well with
results of numerical diagonalization in the strong-coupling regime.

5. Conclusions

This paper has developed a new analytical model of anisotropy, and shown how the results
can be applied to the H ⊗ (h ⊕ g) JT system. The tunnelling states obtained have the correct
anisotropic energy in the limit of strong vibronic coupling, unlike analytical results obtained
when anisotropy is neglected [19]. Although the new model results in complicated algebraic
expressions for the overlaps and matrix elements, especially when there are D3d minima in
the APES, the expressions obtained are readily computable. Even though the results are
complicated, there are still advantages in having algebraic expressions over the alternative of
numerical results. For example, the form of the states more clearly illustrates the underlying
physics. The results are also more readily used for further calculations where the energy levels
are needed, such as the determination of vibronic (Ham) reduction factors. Furthermore, it
should be noted that the H ⊗ (h ⊕ g) JT system contains the highest possible vibronic and
electronic degeneracies, so results for any other cubic or icosahedral system will be rather less
complicated.
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Appendix

In this appendix, the various S-matrices needed for the scale transformation calculation are
given. These matrices were found by calculating the curvature matrix of the energy surface at
the point of the minimum in question, using the method of Öpik and Pryce [20].

For the D5d minima, only two matrices are needed, namely

SD5d
A =

√
1

10




√
3 1

√
6 0 0

0 0 0 0
√

10
0 0 0

√
10 0

−√
20/3 0

√
10/3 0 0

−√
1/3 3 −√

2/3 0 0




SD5d
B =

√
1

10




√
3 1 −√

6 0 0
0 0 0 0

√
10

0 0 0
√

10 0√
20/3 0

√
10/3 0 0

−√
1/3 3

√
2/3 0 0


 .

(A.1)

For the D3d minima six matrices are needed, three for the h vibrational mode and three
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for the g vibrational mode. The h matrices are

SD3d
h,a =




0 0 1
3

√
3 1

3

√
3 1

3

√
3

− 1
4

√
12 0 − 1

12

√
6 − 1

12

√
6 1

6

√
6

0 1
2

√
3 − 1

4

√
2 1

4

√
2 0

0 1
2

1
4

√
6 − 1

4

√
6 0

1
2 0 − 1

4

√
2 − 1

4

√
2 1

2

√
2




SD3d
h,b =




0 0 − 1
3

√
3 1

3

√
3 1

3

√
3

0 1
2

√
3 − 1

4

√
2 − 1

4

√
2 0

1
4

√
12 0 1

12

√
6 − 1

12

√
6 1

6

√
6

− 1
2 0 1

4

√
2 − 1

4

√
2 1

2

√
2

0 1
2

1
4

√
6 1

4

√
6 0




SD3d
h,e =




− 1
6

√
6 1

2

√
2 − 1

3

√
3 0 0

− 1
6

√
3 1

2
1
3

√
6 0 0

0 0 0 1
2

√
2 1

2

√
2

1
2

√
3 1

2 0 0 0

0 0 0 1
2

√
2 − 1

2

√
2



.

(A.2)

The g mode matrices are

SD3d
g,a =




0 1
3

√
3 1

3

√
3 1

3

√
3

1 0 0 0
0 − 1

2

√
2 0 1

2

√
2

0 − 1
6

√
6 1

3

√
6 − 1

6

√
6




SD3d
g,b =




1 0 0 0
0 1

3

√
3 − 1

3

√
3 − 1

3

√
3

0 0 1
2

√
2 − 1

2

√
2

0 1
3

√
6 1

6

√
6 1

6

√
6




SD3d
g,e =




0 0 − 1
2

√
2 1

2

√
2

− 1
6

√
6 1

6

√
30 0 0

1
6

√
30 1

6

√
6 0 0

0 0 1
2

√
2 1

2

√
2


 .

(A.3)
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[20] Öpik U and Pryce M H L 1957 Proc. R. Soc. A 238 425
[21] Joshi A W 1984 Matrices and Tensors in Physics (New Delhi: Wiley)
[22] Dunn J L 1988 J. Phys. C: Solid State Phys. 21 383


